RADIOACTIVE AEROSOLS IN GRANITIC REGIONS OF KARNATAKA STATE, INDIA

C. Ningappa, J. Sannappa,

Department of Physics, Yuvaraja's College, Mysore-570 005, India Tel: +91-821- 2519870, Email: sannappaj@yahoo.com

Introduction

Most of radionuclides naturally occurring are ²²²Rn, ²²⁰Rn and their progenies released from ²³⁸U and ²³²Th series. ²²²Rn is a naturally occurring radioactive noble gas. As a noble gas with half-life of 3.82 days, it decays to short lived and long-lived progenies [1]. The progenies are heavy metal radionuclides that attach to other atmospheric components to form aerosol particles and are responsible for health hazards. Many surveys on radon, thoron and their progenies owing to their hazardous effects on health after inhaling them revealed that ²²²Rn and ²²⁰Rn progenies cause the main part of the radiation dose to the lungs with the contribution depending on the relative amounts of the radionuclides in the air. The area of the present study is granite region of Karnataka State, India. The geology of this part of southern India [3] forms predominantly a granitic terrain with numerous varieties of granite and granitic gneiss, charnockite, alkaline rocks etc. The rocks are of peninsular gneiss and are widely distributed throughout the study area. In the present study the concentrations of radon and thoron progenies were measured in granitic regions of Karnataka State and are presented and analysed.

Methodology

 222 Rn, 220 Rn and their progenies concentrations in granite regions of Karnataka state were measured using Solid State Nuclear Track Detectors (SSNTD) based twin cup dosimeters and activity of 226 Ra and 232 Th were measured by using HPGe detector. The inhalation dose due to 222 Rn and 220 Rn can be estimated by using the formula –1.

$$D (mSvy^{-1}) = \{(0.17 + 9F_R) C_R + (0.11 + 32F_T) C_T\} \times 1750 \times 10^{-6} \quad -----1$$

Where C_R and C_T are the ²²²Rn and ²²⁰Rn concentration, F_R and F_T are the equilibrium factor for ²²²Rn and ²²⁰Rn concentration respectively. Occupational factor of 1750 hours is used.

Results and discussion

The activity of ²²⁶Ra, ²³²Th and concentrations of ²²²Rn, ²²⁰Rn and their progenies were measured in granitic regions of Karnataka State (Mysore, Bangalore, Chitradurga and Tumkur districts) are presented in Table -1. From the Table we observe that, the activity of radium varies from 30 to 165 Bq.kg⁻¹ with a median of 69 Bq.kg⁻¹ and thorium varies from 37 to 541 Bq.kg⁻¹ with a median of 107 Bq.kg⁻¹. The concentration of radon and thoron varies from 22 to 265 Bq.m⁻³ with a median of 59 Bq.m⁻³ and 12 to 153Bq.m⁻³ with a median of 40 Bq.m⁻³ respectively. The corresponding progenies vary from 0.2 to 4.8 mWL with a median of 0.6 mWL and 0.3 to 1.8 mWL with a median of 0.55 mWL respectively.

Concentrations of ²²²Rn and ²²²Rn are mainly depends on radionuclides present in soil and bedrock. The maximum concentration of ²²²Rn, ²²⁰Rn and their progenies were observed in Alanahally and Maralebekuppe of Bangalore district. Because these villages

are situated where the granite rocks are well exposed to the surface compared to other areas and the area is attributed by pink granite. The bedrock or soils have more concentrations of radionuclides and mining activity was takes place during the time of study. Due to mining activity, the bedrock gets destroyed and fissured. Hence higher concentrations of ²²²Rn and ²²⁰Rn are observed. The concentrations of progenies are depends on human activity, meteorological parameters and concentrations of parent gases. Slightly less concentrations of ²²²Rn, ²²⁰Rn and their progenies were observed in Ramanahally and Hosahally of Bangalore district compared to Alanahally and Maralebekuppe. This may be due to lower concentration of radionuclides. The lower concentration of ²²²Rn, ²²⁰Rn and their progenies were observed in Maharajakatte, P.D. Doddi and Kabballi of Bangalore, Siddaganga hills, Koratagere and Madhugiri of Tumkur and Chitradurga Districts and Chamundi granite of Mysore. In Maharajakatte, P.D. Doddi and Kabballi of Bangalore district mining activity is completely stopped and the pink granite rocks are overlapped by dolerites and altered granites. Dolerites have lower concentrations of radionuclides compared to granites. In Chitradurga and Tumkur districts, granites contain minimum concentration of radionuclides. Hence in these regions lower concentrations of ²²²Rn, ²²⁰Rn and their progenies were observed.

Conclusion

The maximum concentrations of radon, thoron have been observed in the in the granite region where the mining activity was takes place. The concentration is mainly depends on the activity of radionuclides present in soil and rocks. The results show that the impacts of radiation hazard due to mining activity (crushing and loading) on the laborers and public near the granite regions are considerable. There is a poor correlation between parent and progenies concentrations. The activity of ²²⁶Ra and ²³²Th, concentration of radon and its progenies are higher than global average [1].

References

- 1. UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risks of Ionizing Radiation, Report to the General Assembly, United Nations, New York, 2000.
- 2. Steinhausler, F., 1996. Environmental ²²⁰Rn; a review, Environment International; 22(1), S1111.
- 3. Raghuveer, Lalgondar B A and Jayaram S. Physical properties of earth with special reference to ornamental stones of Karnataka geological studies. No.272, Department of mines and geology, Bangalore, 1997.
- Bachli, R, Burkart W Influence of subsoil geology and construction technique on indoors air ²²²Rn levels in 80 houses of the central Swiss Alps. Health Phys. 56 423 1989.

Location	Activity of radionuclides (Bqkg ⁻¹)		Concentration (Bq.m ⁻³)		Progeny conc. (mWL)		Eq.eff.dose (mSv.y ⁻¹)
	²²⁶ Ra	²³² Th	²²² Rn	²²⁰ Rn	²²² Rn	²²⁰ Rn	
A. Mysore 1. Chamundi granite	30	68	22	12	0.2	0.1	1.2
 B. Bangalore 2. Ramanahally 3. Alanahally 4. Maralebekuppe 1. Maharajakatte 2. Kabballi 7. PD Doddi 8. Hosahally 	63	144	126	92	1.4	0.9	1.4
	70	145	185	92	2.4	1.8	1.8
	165	530	265	153	4.8	1.6	2.6
	42	189	74	52	0.6	0.3	0.8
	32	37	53	38	0.2	0.4	0.6
	69	211	65	42	0.3	0.2	0.7
	123	541	164	130	1.1	0.6	1.8
C. Tumkur 9.Siddaganga hills 10. Koratagere 11. Madhugiri	75	60	50	20	0.4	0.6	0.4
	75	70	43	18	0.7	0.8	0.4
	59	65	45	13	0.3	0.4	0.4
D. Chitradurga 12. Chitradurga	69	67	36	14	0.6	0.5	0.3
Average	75.7	177.3	94	56	1.1	0.7	1.0

Table-1 Average activity of ²²⁶Ra, ²³²Th, concentrations of ²²²Rn, ²²⁰Rn and their progenies and equivalent effective dose.